Facilitating Problem Solving Across Representations in Introductory Electricity and Magnetism

Dong-Hai Nguyen

Elizabeth Gire, N. Sanjay Rebello

Physics Education Research Group

Kansas State University

Kansas State University Physics Education Research

This work is supported in part by NSF grant 0816207

Objective and Research Questions

- Objective:
 - Facilitate students' problem solving across representations in Electricity & Magnetism (E&M)
- Research Questions:
 - What kinds of difficulties do students have when solving E&M problems in graphical and equational representations?
 - What kinds of hints may help students overcome those difficulties?

Methodology

- Individual teaching/learning interviews
- 15 students in calc-based E&M course

- Several E&M problems
- Numerical, Graphical, Equational Representations
- Think-aloud problem solving
- Verbal hinting

Findings – Equational Representation

- Common difficulties
 - mapping an equation to physics
 - setting up an integral
 - distinguishing variables and constants
- Helpful hints
 - boundary values and variation of function
 - physical meaning of mathematical notations and operators

Example – Equational Representation

Int.2, Prob. 2: Find the resistance of a cylindrical resistor whose resistivity is given as per the equation:

$$\rho(x) = \alpha x$$

Correct solution:

$$dR = \frac{\rho(x) dx}{A} = \frac{4\alpha x dx}{\pi D^2}$$
$$R = \int dR = \int_0^L \frac{4\alpha x dx}{\pi D^2} = \frac{2\alpha L^2}{\pi D^2}$$

Common error:

$$dR = \frac{\rho(x)L}{A} = \frac{4\alpha x L}{\pi D^2}$$
$$R = \int dR = \int_0^L \frac{4\alpha x L}{\pi D^2} dx = \frac{2\alpha L^3}{\pi D^2}$$

5

Findings – Graphical Representation

- Common difficulties
 - interpreting graph information
 - matching integral with area under the curve
- Helpful hints
 - special values on the graph
 - relation between integrand and function being plotted

 Int.1, Prob. 3: Draw charge distribution on the arch. Charge density is given by a graph.

Decoececthangegeislisibilitation

 Int. 2, Prob. 4: Find the resistance of a resistor whose resistivity and cross-sectional area change along its length.

0.50

A(x) vs. x

1.00

x (m)

1.50

2.00

9

Common error:
$$R = \int_{0}^{\infty} \frac{p(x) dx}{A(x)} = \frac{\int p(x) dx}{\int A(x) dx} = \frac{area under the curve of p(x) vs. x}{area under the curve of A(x) vs. x}$$

10

Conclusion

- Students' difficulties with graphical and equational representations
 - due to their inability to interpret physical meanings of mathematical <u>notations</u> and <u>operators</u>
- Hints guiding discussion on those meanings activated the connection
 - mathematical representations & physics context

Future Work

- Create instructional material to facilitate students in solving E&M problems in graphical and equational representations
- Example of such instructional material in Mechanics presented in PERC Targeted Poster Session 1E/3C

For more information, contact

Dong-Hai Nguyen donghai@phys.ksu.edu

N. Sanjay Rebello srebello@phys.ksu.edu