INTERVIEW ROOM VERSUS CLASSROOM: HOW DO THE DATA COMPARE? Jacquelyn J. Chini, Adrian Carmichael, & N. Sanjay Rebello- Kansas State University Sadhana Puntambekar- University of Wisconsin, Madison

This work is funded in part by U.S. Department of Education, Institute of Education Sciences Award R305A080507.

MOTIVATION

- Use teaching/learning interview¹ to investigate student learning
 - Based on teaching experiment²
 - Models natural learning environment
 - Allows more direct access to students' thinking
 - Is inherently different than classroom environment
- Use interview results to inform decisions about curricula
 - Previously reported interview data is richer in detail than classroom data³
 - Are there other differences?

STUDY DETAILS

• Research Question:

How do the data from students completing a curriculum in an introductory physics lab compare with data from students completing the same curriculum in an interview setting?

• Curriculum

- CoMPASS⁴ pulley unit
- Physical pulleys & pulley simulation
- Mixed Methods
 - Quantitative: Pre- & post-test results
 - Qualitative: Worksheet responses

COMPARISON OF INTERVIEW & CLASSROOM SETTINGS: SIMILARITIES

• Introductory physics students

• CoMPASS pulley curriculum

• Two hour intervention

• Worksheets collected

4

COMPARISON OF INTERVIEW & CLASSROOM SETTINGS: DIFFERENCES

Interview Room

Classroom

- Interview Room
- N= 12
- Paid \$25 for participation
- Alone or with partner
- Researcher facilitates
- Audio& video recorded

- Laboratory
- N=132
- Part of normal laboratory
- Groups of 3 or 4 students
- Researcher & TA facilitate
- No audio/video recording

* This study diverged from our typical teaching/learning interview to control for some differences from the classroom setting.

OVERALL TEST PERFORMANCE

•No statistically significant difference between the pretest scores for the Teaching Interview (M=38) and the Class Study (M=31), U=9546.5, p=.15, r=.119

•Teaching Interview scored significantly higher on the mid-test (M=62) than the Class Study(M=50), U=9222.5, p<.001, r=.289.

•Teaching Interview also scored significantly higher on the post-test (M=85) than Class Study (M=69), U= 9380.0, p=.013, r=.206.

6

POST-TEST PERFORMANCE: BY QUESTION

INDIVIDUAL QUESTIONS- 'WORK CHANGE' QUANTITATIVE ANALYSIS (POST-TEST Q9)

ses

of Respon

%

What can you tell about the *work* needed to lift the load by each of setup, if friction is not a factor?
A- Setup A requires most work
B- Setup B requires most work
C- Setup C requires most work
D- All require the same work

INDIVIDUAL QUESTIONS- 'WORK CHANGE' QUALITATIVE ANALYSIS (WORKSHEET)

Q: How did the work required to lift the load change when the pulley setup was changed?

Categories	Teach. Int.	Class Study
Did not change	43%	61%
Changed slightly	16%	5%
Changed	35%	29%
Changed for some setup	0%	3%
Other	6%	2%

Higher percentage of Class Study students in "did not change" category

INDIVIDUAL QUESTIONS- 'WORK- PE' QUANTITATIVE ANALYSIS (POST-TEST Q13)

You use a movable pulley to lift a watermelon to your tree house. How does the work you do lifting the watermelon compare to its potential energy once lifted?

- A- Work > PE
- B- Work \leq PE
- C- Work= PE
- D- Not enough info.

INDIVIDUAL QUESTIONS- 'WORK- PE' QUALITATIVE ANALYSIS (WORKSHEET)

Q: How does the work required to lift an object compare to its potential energy once lifted?

Categories	Teach. Int.	Class Study
Work=PE	53%	53%
Work almost PE	6%	9%
Work>PE	21%	7%
Work <pe< td=""><td>6%</td><td>3%</td></pe<>	6%	3%
Work, PE different	9%	4%
Depends on system	0%	3%
One constant	3%	15%
Other	0%	4%

Same percentage of Class Study and Teaching Interview students in "Work = PE" category

11

SUMMARY & FUTURE WORK

- Quantitative and qualitative results do not neatly overlap
- Why did Class Study students perform as well as or better on worksheets while Teaching Interview students performed better on post-test?
- Repeat experiment with cameras in classroom setting
- Validity and reliability studies of the test currently underway

Thank You!

Contact Information: haynicz@phys.ksu.edu

For more information, see our poster at AAPT tonight or at PERC!