





# Research Context Seventh-grade classroom in rural Wisconsin 24 students in class 23 Caucasian 1 Pacific Islander 8-week curriculum on Simple Machines Inclined plane Wedge & Screw Lever

- Wheel & Axle
- Pulley

# <section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

# Data Sources

- Pre-Post Conceptual Test (N=19)
  - Effort force,
  - Work,
  - Force-distance tradeoff, and
  - Mechanical advantage in simple machines
- Structured Interviews (N=10)
  - I: After 2 weeks : After inclined plane
  - II: After 5 weeks : After wedge, screw, lever, wheel & axle
  - III: After 8 weeks : After pulley end of curriculum

# Results: Conceptual Tests

|           | Ν  | Mean       | S.D. |
|-----------|----|------------|------|
| Pre-Test  | 19 | 12.32 / 20 | 3.07 |
| Post-Test | 19 | 17.63 / 20 | 4.35 |

| Paired Sample T-test   |       |    |                                            |             |
|------------------------|-------|----|--------------------------------------------|-------------|
| Difference<br>in Means | t     | df | p (t <t)< td=""><td>Effect Size</td></t)<> | Effect Size |
| 5.316                  | 5.096 | 18 | ~1x10 <sup>-4</sup>                        | 1.17        |

| Results: Interviews (slide 1 of 2) |           |   |   |     |  |
|------------------------------------|-----------|---|---|-----|--|
| FREQUENCY OF IDEA                  | Interview |   |   |     |  |
| Effort Force is                    | I         | П |   | ALL |  |
| a measurable quantity              | 9         | 6 | 5 | 20  |  |
| a push, pull, or lift              | 9         | 5 | 6 | 20  |  |
| associated with a person           | 6         | 5 | 6 | 17  |  |
| an input to something              | 1         | 4 | 3 | 8   |  |
| what it takes to do something      | 5         | 1 | 1 | 7   |  |
| associated with motion             | 3         | 2 | 2 | 7   |  |
| overcome difficulty of motion      | 1         | 1 | 2 | 4   |  |
| work / power                       | 1         | 3 | 0 | 4   |  |
| load, weight being lifted          | 0         | 1 | 2 | 3   |  |

| Results: Interviews (slide 2 of 2) |           |   |     |     |  |
|------------------------------------|-----------|---|-----|-----|--|
| FREQUENCY OF IDEA                  | Interview |   |     |     |  |
| Work is                            | I         | П | 111 | ALL |  |
| associated with a person           | 7         | 4 | 7   | 18  |  |
| labor to do a task                 | 4         | 4 | 2   | 11  |  |
| effort / force                     | 4         | 3 | 1   | 9   |  |
| a push, pull or lift               | 3         | 2 | 2   | 7   |  |
| an input into something            | 1         | 4 | 3   | 8   |  |
| associated with motion             | 1         | 4 | 3   | 8   |  |
| a measurable quantity              | 1         | 1 | 5   | 7   |  |
| related to force & distance        | 0         | 1 | 1   | 2   |  |
| energy                             | 0         | 1 | 0   | 1   |  |

## Conclusions

- Ideas of Effort Force & Work
  - Measurable quantities : effort force more so than work
  - Person-centered : about equally for effort force and work
  - Effort Force and Work used interchangeably

### General trend toward science conceptions, but...

- Trend *away from* Effort Force as quantity or push / pull
- Trend *toward* Work as quantity, associated with motion
- Trend away from Work as equivalent to Effort Force

# Implications for Curricula

- Experiencing phenomena directly (measurement rather than calculation) appears to support science conceptions.
- Attention to scientific language and relationship to everyday language is critical.
- Context of activity can strongly influence conceptions of scientific phenomena.



(srebello@phys.ksu.edu)

Physics Education Research Group

11

10