Facilitating Student Understanding of Motors in an Everyday Context

Jacquelyn J. Haynicz N. Sanjay Rebello

Kansas State University

tes Education Research Group ed in part by NSF Grant REC-0133621

Motivation

- Enhance learning experience for college students in introductory physics classes.
- Broaden appeal of physics through real-life applications and devices.

Research Questions

- What are students' ideas about how the blender works?
- What instructional strategies can help students construct their understanding of how the blender works?

Research Plan (1 of 2) Blender chosen because...

- Motors already covered in class
- Most students familiar with blender
- Concept applicable to many devices

Emergent Themes

- Epistemic mode
 - Knowledge is 'self-constructed'2
- Intuition-based Reasoning
 - 'Phenomenological primitives'³
 - Reversing input will reverse output
 - Closer is stronger
 - Canceling out
 - 'Attunement to Affordances'⁴
 - Use similarities between demos and blend e.g. attaching battery to the motor

² Hammer & Elby, (2002) ³ diSessa, (1988) ⁴ Greeno, *et. al.*, (1993)

Emergent Themes

• Structure over Function

• Focus on structural similarities not function⁵

(2 of 2)

- Confusing charges & magnets
 - Described magnets as being charged⁶
 - Combining ideas of magnets and charges⁷
- Lack of variance
- No significant differences between students who had material in class and those who had not.

Mestre, (1994) ⁶ Maloney et. al., (2001) ⁷ Hrepic et. al., (2005) 8

Future Work

- Conduct interviews with more students
- Curriculum Development
 Develop a curriculum that teaches in context
- Curriculum Implementation

10

