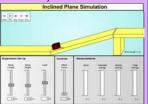
Can Simulations Replace Hands-on in Mechanics Too?

Jacquelyn J. Chini, Adrian Carmichael & N. Sanjay Rebello, *Kansas State University*Sadhana Puntambekar, *University of Wisconsin, Madison*


1. Introduction

- Finkelstein, et. al. (2005) showed that students who built virtual circuits outperformed students who built physical circuits.
- * Microscopic phenomena such as current flow can be modeled more clearly in a simulation.
- *We ask: Does this extend to mechanics as well?

2. Inclined Plane Study

- *CoMPASS curriculum (Puntambekar, et. al, 2003)
- * Students did activities as shown in table below.
- *Students used manipulatives as shown below:
- Physical
- (3 lab sections)
- Virtual (2 lab sections)

Manipulatives	Variables Changed	Ν
Physical	Length & Height	29
Virtual	Length & Height	37
Physical	Length & Friction	54
Virtual	Length & Friction	30

3. Pre- & Post-Test Results

- *Mean score on 16 multiple-choice questions
- Length & Height (LH) Physical & LH Virtual are statistically the same on pre-test (p=.9878)
- *LH Virtual is statistically significantly higher on the post-test than LH Physical (p=.0008).

p			
Section	Treatment	Pre-Test	Post-Test
1	LH Physical	59.9%	66.2%
2	LH Virtual	60.0%	77.5%
3	LF Physical	59.2%	66.0%
4	LF Physical	60.1%	65.9%
5	LF Virtual	56.7%	67.1%

5. Discussion

- ***LH** Virtual students perform best overall.
- # In Q6.2, 7 & 15 only virtual students improve.
- #In Q6.2 frictionless ramp causes difficulty for LH Physical but not LH Virtual students, because latter have only seen frictionless case.
- *The difference in friction's presence could also explain the difference in Q14 and Q15.
- *Q7 seems to be difficult for all students. Absence of friction does not explain results.

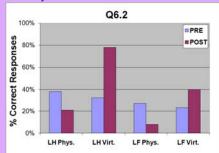
4. What Questions on Test Led to This Difference?

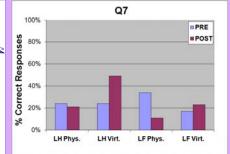
Four questions had 20% or more difference between LH Physical and LH Virtual treatments

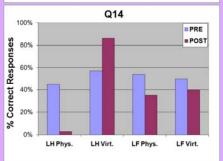
Q6.2) You use a 5 m long frictionless ramp to move an object into a van. If you use a 10 m long frictionless ramp instead, then the work done would:

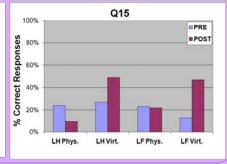
ne would.			
Δ	nswers	LH Phys.	LH Virt.
A. Incr	ease	55%	11%
B. Dec	rease	24%	11%
C. Sta	y the same	21%	78%
D. Not	enough info	0%	0%

Q7) Jane lifts a box straight up 2 meters. Mary uses ramp shown. If friction is not a factor, how does work done compare?


<u> </u>			
Answers	LH Phys.	LH Virt.	
A. Jane does more work	38%	49%	
B. Mary does more work	38%	3%	
C Both do same work	21%	49%	
D. Not enough info	3%	0%	


Q14) An object sits at the top of a frictionless ramp. How does the object's potential energy (PE) compare to the work required to move it to the top of the ramp?


Answers	LH Phys.	LH Virt.
A. PE > Work	28%	8%
B. PE < Work	69%	0%
C. PE = Work	3%	86%
D. Not enough info	0%	5%


Q15) How does an inclined plane's actual mechanical advantage (MA) compare to its ideal mechanical advantage (MA)?

Answers	LH Phys.	LH Virt.
A. Ideal MA always > Actual MA	48%	22%
B. Ideal MA always < Actual MA	14%	8%
C. Ideal MA = or < Actual MA	10%	22%
D. Ideal MA = or > Actual MA	28%	49%

