Investigating Students' Understanding of Wavefront Aberrometry

Dyan L. McBride, Dean A. Zollman Kansas State University

Supported in part by the National Science Foundation under grant DUE 04-27645

Research Question:

How do students use their existing knowledge to understand wavefront aberrometry methods of diagnosing vision defects and what resources do they use in constructing their understanding?

Methodology:

- formal, semi-structured interviews with twelve students (3 females, 9 males)
 - > enrolled in a calculus-based introductory level physics course
 - > interviewed before they had instruction about mirrors/lenses, while learning about the electromagnetic properties of light
- interview began with the participants looking at an eye chart in order to place the interview in the context of diagnosis
- students were asked to explain how the human eye works
- discussion of traditional diagnosis techniques
- model of wavefront aberrometry
 - > explain how such a system would work
 - > advantages and disadvantages

Analysis:

- phenomenographic approach to illicit variations in student ideas instead of researcher conceptions
- students' responses examined to identify any resources
 - > single participant
- > all participants to extract possible themes.

Resources that can be applied appropriately to wavefront aberrometry:

- light entering a lens differently will focus differently
- looking at patterns and symmetry

Resources may not necessarily be appropriate fo understanding wavefront aberrometry:

- light can be represented by a straight line
- big change in the grid represents a big aberration
- controlled experiments only measure one thing at a time.

	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12
Light and Lenses												
Light can be represented by a line	X	Х	X		X	Х	X		Х	Х	Х	
Light is a wave	X	X		X						X		
Concavity/thickness/curvature of a lens changes the focus	х			Х	Х	Х	Х			Х	Х	
Aberrometry										_	_	
Light entering a lens differently will focus differently	Х		х	х	х	х	х	Х	х	Х		х
An aberration is an anomaly					Х			X		Х		Х
Size of change in grid reflects size of aberration	Х				Х				х			х
Symmetry has value						Х				Х	Х	
Can only measure one thing at a time					Х			X				
Objectivity												
"Objective" means no human opinion/interpretation			х	Х	Х		Х					х
"Objective" means consistent (always same for everyone)		х		х	х		х			Х		

Conclusions:

- most students have a large body of prior knowledge about the human eye and basic optics
- much scaffolding will be needed in order to facilitate the transfer of that knowledge to wavefront aberrometry techniques
- students have a significant body of resources that they use to understand aberrometry
 - > some appropriately and some inappropriately
- students do not immediately recognize the subjective nature of traditional diagnosis
 - > once prompted they both acknowledge and appreciate the value of objective methods

