

Research Question

- To what extent do students retain and transfer their calculus knowledge when solving problems in introductory physics?
- What difficulties pertaining to the transfer of calculus do students have while solving these problems?

2

Transfer

- Transfer is often defined as the ability to apply what has been learned in one context to a new context¹
- Methods to assess transfer
 - One-shot assessments such as performance on tests and examinations
 - Graduated prompting²

¹Byrnes (1996)

²Newmann (1989)

Quantitative Method: Examine Students' Exam Performance

- Engineering Physics II students
- n=147 for Fall 2004, n=269 for Spring 2005
- Three exams were collected for each semester
- Develop individual rubric to measure physics correct and calculus correct in every calculusbased physics problem
- Calculate the Pearson Correlation between students' calculus and physics performance

.

Example—Scoring Rubric

Points	Physics Performance Criteria	Calculus Performance Criteria
3	Understand need to integrate from infinity to R with the proper E	Do the integration correctly, knowing how to apply the limit
2	Do the integral with the proper E, but do not know what is the limit; wrong with the negative sign; did not put the number in finally	Do the indefinite integration correctly, do not know how to apply limit; algebra wrong: do not provide the numerical answer
1	No integral, Use other formula like V=E*d, or put into the wrong E; or adding two parts	The indefinite integration is not exactly right, some constant is wrong
0	Wrong. Like Use a point charge formula instead of using E	Wrong

6

- - Eight male volunteers
 - Sophomores
 - Mech. Engr. majors
- Two sessions
- For each session:
- - About one hour long
 - Solve two physics problems
 - Solve isomorphic calculus problems
 - General questions about calculus background and application of their calculus knowledge in physics

1) E field caused by a half-circle charge

2) Electric potential caused by changing E field B field caused by a non-constant current

4) Induced current caused by moving of the

loop in a changing magnetic field

distribution

distribution

Interview—Fall 2004

- Engineering Physics-II students
 - Five male, three female, various majors
- For each session (two sessions total):
 - Similar format as Fall 2004
 - Do not solve pure calculus problem
 - Solve sets of variation of physics problem to explore the criteria use "integration" instead of "summation"

Focus on exploring the origin of difficulties

Interview Results: Fall 2004

- Self-confidence in calculus knowledge retention
- Realization that calculus is required in physics
- Lack of confidence in <u>setting-up</u> physics problems

Students' self-reflections are consistent with our observations.

10

Interview Results: Spring 2005

- Consistent with previous interview results
- Criterion on use integration in physics
 - When problems were similar to the examples seen in text (4 out of 7 interviewees)
 - Could not explain why they used integration
 - Could not solve the variation physics problems
 - Use integration to add up infinitesimally small elements (3 out of 7)

Interview Results: Spring 2005

- Difficulties when applying integrals
 - Determining the variable of integration.
 - "all constants (variables), I do not know what I should integrate although I know how to integrate...
 - Deciding the limits of integration
 - Students usually did not realize they used the wrong
 - Origin of difficulties
 - Physics class (majority)
 - Calculus class

12

Conclusions

- The strong correlations between students' calculus and physics performance indicates transfer.
- Students believed that for the most part their calculus class has provided them with adequate knowledge and skills required for physics.
- Students believed they did transfer their calculus knowledge when solving calculus-based physics problems.
- Students need external clues to facilitate the transfer process.

13

Further Work

- Collect participants' scores in their calculus class and conduct correlation analysis.
- Run hierarchical cluster analysis using all kinds of variables to find how they relate to each other.

14

For More Information...

Lili Cui

Kansas State University

lili@phys.ksu.edu

(785)532-7167

15