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Abstract. In this paper, we report on the impact that slight changes in question format have on student response to one-
dimensional vector subtraction tasks. We use Maximum Likelihood Estimation (MLE) analysis to analyze students’ responses
on six very similar questions which vary in context (physics or mathematics), vector alignment (both pointing to the right or
opposed), and operation (left-right subtraction or right-left subtraction). Responses on all questions are generally correct and
do not vary by instructional week or even by course. Context and specific operation do not show significant differences. Vector
alignment is significantly different, indicating that perception or heuristic thinking is a bigger cause of failure than conceptual
deficit. The emphasis in this paper is an introduction to likelihood estimation.
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INTRODUCTION

Vector subtraction is endemic in introductory physics
but students still have problems with it, even after
instruction.[1, 2] Understanding vector operations is
foundational to understanding physics at the university
level.[3, 4] Previous research on vector addition and sub-
traction in two dimensions[5, 6] suggests that graphical
representations and context — mathematics, physics, or
physicsless physics[7] — both play a role in predicting
students’ success.

The data discussed in this paper are part of a larger
study on how students’ conceptual ideas change with
instruction.[8, 9] The study has computerized, paper-
based, and interview components; the data discussed
here are exclusively paper-based. Responses on these
questions do not exhibit any changes with instruction,
and data from all weeks in the introductory sequence, in-
cluding Mechanics and Electricity and Magnetism have
been collapsed together.

In this short paper, we use an easily-understood exam-
ple from one-dimensional vector subtraction to highlight
likelihood estimation, a statistical analysis method which
is computationally difficult but more honest to the meth-
ods of PER than traditional probability.

PARTICIPANTS

The participants in this study were university students
enrolled in a first quarter (Mechanics) or second quarter
(Electricity and Magnetism) introductory calculus-based
physics course primarily designed for engineering stu-
dents at the Ohio State University. In total, 1694 students

participated in the study over 5 quarters, with roughly
equal numbers of students each quarter. In each quar-
ter, the instructor was a regular physics faculty member
who taught both sections. clickers) used beyond the oc-
casional answering of a question from a student. In addi-
tion to the 3 lectures per week, there was one recitation
and one traditional lab section.

DATA COLLECTION

In addition to the standard homework, students were also
given a “flexible homework™ assignment with credit for
participation. The flexible homework assignment con-
sisted of participating in a one-hour session in a physics
education research lab where students would complete
some combination of training, testing, and interviewing.
Data reported in this paper are from these sessions. Typ-
ically, about 95% of students participated in the flex-
ible homework. Because not every student took every
task, the data presented here represent 812 students of
the /1700 total participants in this phase of the study.
We observed during these sessions that students made a
good faith effort to answer the questions to the best of
their ability.

Vector Subtraction

In this paper, we examine students’ responses to two
sets of three related questions about the subtraction of
vectors in one dimension. In each question, the student is
given two vectors (either A and B or v; and vg) graph-
ically in gridded boxes and asked to perform one of



4. Below are two vectors, A and B. In the space provided, please draw B-A.
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FIGURE 1.

B-A

A sample question. For the questions analyzed in this paper, the vector on the left is always magnitude 5 and directed

to the right (“5R”). The vector on the right is always magnitude 3, but could be directed to either left or right (“3L” or “3R”). The
vectors could be labeled “A” and “B”, as they are here, or Av; and Avg, respectively.

TABLE 1. Differences between vector subtraction ques-
tions. A vector which is 5 units long and points to the right
is denoted “SR”.

Name N ‘ Vectors ~ Operation  Correct
AlignedAB 38 | SR 3R A-B 2R
AlignedBA 37 | SR 3R B-A 2L
AlignedV 35 | SR 3R Av 2L
OpposedAB 66 | SR 3L A-B 8R
OpposedBA 151 | SR 3L B-A 8L
OpposedV 485 | SR 3L Av 8L

three operations: (A —B), (B —A), or (Av) (isomorphic
to B—A). Students draw their resultant vector in a pro-
vided gridded box. In contrast to Hawkins, these vectors
are one-dimensional.[5] Each student was only asked one
question on this topic, which followed a series of ques-
tions on vector products.Table 1 summarizes the differ-
ences between the questions, and figure 1 shows one
question as the students saw it.

The definition of Av was not provided to the students.
In a follow-up question, many students were asked to
decide which of the following (singly or in combination)
were equal to Av: v; — vy, vy —v;, vi + V. Irrespective of
prior vector operation, the success rate on this question
was 87% £ 5%. The alternative hypothesis that students
do not know the mathematical definition of Av is not
supported by the data from the follow-up question.

STATISTICAL ANALYSIS

Responses across all questions were generally one of
four variations: magnitude 8 or 2 (the result of adding or
subtracting 5 and 3), to either the right or the left. In this
paper, we focus on the magnitude data and not the direc-
tion data. A minority of responses were magnitude 7 or
9, which we counted as magnitude 8 because some stu-
dents are imprecise artists. Similarly, very few responses
with magnitude 1 or 3 are counted as magnitude 2. To-
gether, magnitudes 8 &= 1 and 2 £ 1 account for 96% of

all responses.

We use a binomial model, collapsing all distractor
responses into a single “wrong” response of magni-
tude, and focusing on the fraction of correct responses
(“score”). Because the data are largely binomial already,
converting magnitude to score allows us to compare suc-
cess across questions with different correct magnitudes.

Likelihood Estimation

Our binomial model is based on the binomial likeli-
hood function instead of the probability density func-
tion. Probability and likelihood are related, but they have
crucial differences. Probability predicts unknown out-
comes given known parameters. Conversely, likelihood
estimates unknown parameters given known outcomes.
For example, consider a case of flipping a coin 10 times
to get 6 heads. The conventional probability is the chance
of getting 6 heads assuming that the coin bias (chance of
getting a single head or tail) is fixed. (The standard hy-
pothesis Hy is that the coin is fair.) The likelihood is the
chances of getting six heads as a function of all possible
coin biases (from 100% heads to 100% tails).

The Probability Density Function (PDF) for a random
variable is a function that describes the probability for
this random variable to occur in a given region in the
observation space. As expected, the integral of the PDF
must equal 1 because the sum of probability for all the
outcomes in one trial should equal 1. In contrast, the
integral of the likelihood function is not meaningful; the
derivative is. This is because the derivative measures the
relative chance of obtaining the observed result (e.g. 6
heads) from slightly different values of the underlying
parameter(s). A large derivative (sharp peak) allows us
to infer that the observation likely results from a narrow
range of bias. A small derivative (broad peak) implies
that the obsevation could likely result from a much larger
range of biases.

Figure 2 shows a plot of likelihood vs probability for



Binomial Likelihood

—— AlignedAB
- - AlignedBA
-+ AlignedV

0 -=-- OpposedAB
N o —— OpposedBA
© -—-- OpposedV

0.20
|

Likelihood
0.15
|

0.0 0.2 0.4 0.6 0.8 1.0

Probability of Success

FIGURE 2. Likelihood as a function of probability for each
question. The shorter three curves in the middle are Aligned
questions; the taller three curves on the right are Opposed
questions.
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FIGURE 3. Score on each question. The three questions
on the left are Aligned questions; the three on the right are
Opposed questions. Error bars represent one standard error
using the conservative Clopper-Pearson method.

the six magnitude questions discussed in this paper. To
read this graph, note that the horizontal axis represents
the probability of success. For each curve, the peak of the
curve (the “maximum” in Maximum Likelihood Estima-
tion) corresponds to the observed frequency of success,
as is expected in a binomial distribution[10]. In the coin
example, this is 60% heads. In our data set, this is the
score.

Determining the success parameter

Parameters are properties of populations: the success
parameter is the fraction of the total population which
would succeed on these questions, were we to test the
entire population. Likelihood allows us to estimate the
population’s success parameter given our data. Narrow
peaks correspond to well-determined parameters. The
width of the binomial distribution curve corresponds to
the uncertainty in each point.

The height of the plot is determined by the value of
the likelihood function, L. The variance, expressed as
y/n? —y?/n?, influences the width of the plot. Values of
n influence the result more than values of y. For a given
observed score, more trials result in shorter, narrower
curves. This is consistent with our intuition that larger
n better determines the success parameter, but inconsis-
tent with our expectation that curves involving probabil-
ity should conserve area. Again, the integral of the likeli-
hood function is not meaningful, and our expectation of
conserved area is misplaced.

Using graphs of the binomial likelihood functions of
different problems, we analyze the spread in likely prob-
abilities for score on each question. From the probabili-
ties of success, all six problems can be divided into 2 two
groups: the rightmost group contains the Aligned prob-
lems which have a relative high probability of success,
comparatively, and the leftmost group includes the Op-
posed problems, which have a relative low probability of
success (though still about 50%). Precisely, in the right-
most group, all the three are statistically same because
they have large overlap, especially problems AlignedAB
and AlignedBA. The cognate problems in the Opposed
set — OpposedAB and OpposedBA — also share a large
overlap. The curve for problem OpposedAB is higher
than the curve for problem OpposedBA because there
are more trials of problem OpposedBA (as seen in Ta-
ble 1). In contrast, problems OpposedBA and OpposedV,
which differ only in context, do not overlap much at all;
we conclude that they are different.

These conclusions are also supported statistically. We
use the Clopper-Pearson method, a conservative and ex-
act method which does not assume an underlying normal
distribution, to calculate our error[11]. Figure 3 is a more
familiar plot of score vs question. In this plot, error bars
correspond to one standard error.

The difference in score on the aligned/opposed axis
is probably not due to a fundamental misunderstanding
of vector subtraction: note ceiling effects on the defi-
nition of Av follow-up question as well as the Aligned
case. Rather, we suggest that the failure is in alterna-
tive methods which are faster, yet may be correct for
some problems. Hawkins[5] notes that students use mul-
tiple methods to solve two-dimensional problems, some
of which are more time-costly and/or technically correct



than others. Students may use fast heuristics which are
more likely to be correct in the Aligned case than in the
Opposed case.

Comparing two plot types

The two types of plots provide complementary infor-
mation, but the different representations make some fea-
tures more apparent than others. The appearance of the
bar plot makes score more visually compelling; on the
likelihood plot, increased score means moving to the
right, which is not necessarily as arresting to the gaze.
However, the appearance of likelihood plot makes »n and
statistical differences more visually compelling. This is
an important distinction. Too often, the appearance of the
bar chart makes statistically insignificant differences be-
tween bars seem weighty.

In a bar plot, the order of the bars is determined
a priori by researchers. In a likelihood plot, questions
group naturally by score: the horizontal axis is naturally
meaningful.

In our data, score clumps naturally by vector align-
ment; however, in principle clumping by one operation is
not necessary. It is an accident of our data that the most
highly scoring questions (on the right of the likelihood
plot, tallest on the bar plot) are also the ones with the
smallest numbers of respondents (and thus the highest
on the likelihood plot); in general, this is not true.

DISCUSSION

Prior research on the physics/mathematics context switch
in one dimension focused on Opposed case[6]. We have
replicated his results in our discussion of magnitude:
OpposedBA and OpposedV are identical except for the
context switch, and the curves are statistically different.
These conclusions are supported if we consider the di-
rection of the Opposed case as well.

There are two additional wrinkles. When we consider
the Aligned case, there is no statistical difference in ei-
ther magnitude or direction for the math/physics context
shift. This could be due to ceiling effects on the question;
however, the presence of ceiling effects indicates that this
question is not difficult for students in either context. A
far larger effect is found between Opposed and Aligned
questions. These two clumps of questions are quite dif-
ferent from each other.

We represent our data in two ways: first, using the
more traditional bar plot, and second, using the more
feature-rich likelihood plot. The likelihood plot shows all
of the information present in the bar plot; additionally,
it makes statistical differences much more apparent and

does not rely on the researcher to manually order the
horizontal axis.

In PER, quantitative data usually take the form of
samples drawn from a larger population, and researchers
would like to draw conclusions about some parameter in
the greater population. Probability assumes that popula-
tion parameters are already known, and outcomes from
data need to be estimated. Likelihood estimation is de-
signed to estimate population parameters given known
outcomes, and is better suited to the structure of our data.
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