The Step Function – Getting Started

Goals and Introduction

In the previous in-gagement, you studied the eigenfunctions and wave functions of a free particle.  Now we are interested in looking at how those functions change when the particle undergoes an interaction.  The general idea of a particle coming to an area where the potential is changing, interacting with that potential, and then leaving that area with some change in its velocity is referred to as scattering in both quantum and classical mechanics.

Besides a potential that is constant everywhere, the most simple piecewise constant potential energy function is one with just two regions and a different potential energy in each region as shown below.
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Figure 1:  A step function potential.

This potential represents a large localize force acting on the particle at x=a with no forces acting anywhere else.  An electron traveling into or out of a piece of metal experiences a force like this near the surface of the metal.    For this situation, we expect classically to see a particle traveling from left to right (or right to left) with a constant speed in each of the two regions but a sudden change in speed as it crosses x=a.  In quantum mechanics we need to find the wave function in order to see how a quanta will behave in this potential.  To do this we will write a free particle solution to the wave function in each of the two regions and then use mathematical boundary conditions at x=a to fix some of the free parameters and match the solution across the boundary.  The resulting wave function predicts that quanta behave very differently in this potential than classical particles.

Writing the wave function in each region

Since the potential energy is constant in each region, all of the forms of the free particle wave function and eigenfunction that you have already learned can be used to write the wave function or eigenfunction in each region.  As a reminder, equations 1, 2, and 3 show the three forms of the free particle eigenfunction that you have learned about and equations 3, 4, and 6 give the corresponding wave functions.
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(Equation 1)
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(Equation 2) 
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(Equation 3)
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(Equation 4) 
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(Equation 5) 
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(Equation 6)

Recall also that the wave number, k is given by:


[image: image8.wmf]2

)

(

2

h

V

E

m

k

-

=








(Equation 7)

In order to distinguish which region the equation applies to we usually write the parameters A, B, C, D, a, b, V, λ, and k and the wave function and eigenfunction, Ψ and ψ, with subscripts 1 or 2 to represent region 1 or 2.  So if we wanted to write Equation 1 as an eigenfunction in region 1, we would write:
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(Equation 8)

where
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(Equation 9)

Exercise 1:  Write Equation 1 as an eigenfunction in region 2 - your solution should look a lot like 8.  For the energy diagram shown in Figure 1 with V2 > V1, is the wavelength longest in region 1 or in region 2?

Matching at the boundary

In order to make sense at x=a, we need to have a smooth probability density function, Ψ*Ψ, at that boundary.  This requires that the wave function (and thus the eigenfunction) be continuous and have a continuous first derivative.  (You may recall from a course in differential equations that the solution to a second order linear differential equation is continuous and has a continuous first derivative.)  So, in order to match the eigenfunction at x = a in Figure 1, we need to apply the conditions:
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(Equation 10)

Exercise 2:  Write out the actual boundary conditions for Figure 1.  In other words, write the conditions of Equation 10 using the eigenfunction of Equation 8 and the eigenfunction you wrote in Exercise 1.

Exercise 3:  The solutions to the equations that you wrote in Exercise 2 are rather complicated unless we let a = 0.  We can always do this by shifting our x coordinate axis.  So the result for a = 0 can be used in any problem.  Solve the equations you wrote in Exercise 2 with a = 0, matching boundaries from left to right.  (Find A2 and B2 in terms of A1, B1, k1, and k2.)

Exercise 4:  Solve the equations you wrote in Exercise 2 with a = 0 again, this time matching boundaries from right to left.  (Find A1 and B1 in terms of A2, B2, k1, and k2.)

Free parameters after matching

In this problem we have four (complex) free parameters (A and B in each region) and two boundary conditions.  This means that after solving the boundary condition equations we will still be left with two free parameters (such as A and B in one region).  As was true with the free particle case, one of those free parameters can be taken to be the overall (complex) amplitude of the wave function - which will always be a free parameter.  So ignoring this we still have one (complex) free parameter to play with.  As with the free particle case, adjusting this parameter will give us wave functions that will represent different physical situations.  As you explore possible wave functions in WFE, try to figure out which wave function represents which physical phenomena.  Recall that there are two classical situations possible - a particle moving from left to right and a particle moving from right to left.  Try to figure out which quantum solutions correspond to these two classical states.  You might also anticipate that there will be superpositions of these two states that might result in standing wave solutions that have no classical analogue.

Questions:
1) Consider a classical particle in the situation described by Figure 1.  In which region is the particle moving fastest?  Why?  In which region is the classical probability density greatest?  Why?  What would you expect a graph of the classical probability density function to look like?

2) Often when we introduce energy diagrams like the one in Figure 1 to lower level students they think that it represents a particle hitting a wall.  Why do you think that they might think that?  What are they confusing?  How might we help them get around this confusion?

3) We’ve said that the wave function and it’s first derivative both need to be continuous.  Describe in your own words (without jargon) why this needs to be.
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