Bound States – Exploring

Introduction

We are interested in studying the wave functions and eigenfunctions for a quanta in situations where E<V in both edge regions.  It is these situations that allow bound states.  Classically a bound particle can have any value of total energy (as long as it remains in the potential minimum).  But the constraints on a quanta will restrict it to only certain energies.

The simple well

We will start our exploration in the simplest situation with bound states (see Figure 1).
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Figure 1: A simple square well.

Activity 1:  Run WFE and set the mode to Sketcher - auto k.  (Recall that in this mode you still have full control over the wave function parameters A and B (or a and b) but the computer automatically sets k in each region.)  Set the number of regions to 3 (which should set the region widths to 2.0nm automatically).  Set the total energy to 1.0eV and the potentials to 2.0eV, 0.0eV, and 2.0eV (from left to right).  Set the equation type to a*sin(kx+b) in the center region.  (Note that the exponential equation types are automatically selected in the left and right region.)  To begin with, set A=1, B=0 in the left region and A=0, B=1 in the right region.  Remember, since these are both edge region you must have B=0 in the left region and A=0 in the right region - otherwise the wave function would blow up at ±∞.  Finally, try to adjust B in the right region, A in the left region, and a and b in the center region until your eigenfunction and first derivative are both continuous at both boundaries.  (You may want to Show Derivative.)

As you can see, there is just no way with only the four adjustable parameters to match both the function and its derivative at both boundaries.  You can get one boundary matched up but then you just mess it up trying to get the other boundary matched up.  In all previous problems you had at least one more free parameter to adjust to match up the boundaries.  But in this problem two of the normally "free" parameters are fixed due to the conditions at x=±∞.  There is just no solution to this particular problem.  

The only other parameter that you can change without changing the potential is the total energy.  So if there is any hope of finding solutions you will have to try to find them using different values of total energy.

Activity 2:  Try again to match the function and derivative at both boundaries.   This time use B in the right region, A in the left region, a and b in the center region, and the total energy as "free" parameters.  This will take some patience, but it can be done.  (Note: make sure you keep your total energy less than 2.0eV or you won't be in a bound state.)  (Hint: you may find it easiest to first change your total energy by a small amount (like 0.1 or 0.2) and then use the other parameters to get the best match that you can and then change the total energy a small amount again...)  When you get a match, sketch it and write down the parameters that you used to get it.

As you learn more and more physics, you discover many "tricks of the trade" that can make problems easier to solve.  One such trick is to use the symmetry of a problem to simplify the solution.  In this case the potential is symmetric so you might expect some symmetry in the eigenfunction.  It is easy to prove  that if the potential is symmetric then the eigenfunction must be either an even function or an odd function.  For the case here, this means that the solution will always have B in the right region equal to ±A in the left region and that b in the center region will always be 0 or π/2.  (If you use the equation type Asin(kx)+Bcos(kx) in the center region then either A or B will always be zero in that region.)

Activity 3:  Using this additional information repeat Activity 2 to try to find one or two other value of total energy which have solutions (which can be matched at both boundaries).  (There are six.)  Sketch the functions and write down the parameters for each solution that you find.

Activity 4:  Compare these solutions to the resonances that you found in the previous in-gagements.  How are they similar?  How are they different?  In those in-gagements you developed a procedure for guessing the values of total energy for which the resonances would appear, does that same procedure work here?  (If not then find a similar procedure that does.)  Use your procedure to show why there will be (about) six bound states in this well.  Predict the total energy and shape of each of them.

Exploring the solutions

Now we will use the Explorer mode of WFE to view these wave functions and their probability densities in time.  But you have to be careful when using the Explorer mode of WFE to view bound states.  This mode will always do its best to find a wave function for any value of total energy that you set.  In scattering situations there is a correct wave function at every value of total energy but in bound situations there are only certain values of total energy that have wave functions.  When you use WFE to look at bound states it will always match boundaries from left to right (or right to left) correctly starting with B=0 in the leftmost region (or A=0 in the rightmost) and then finding A and B in each other region to match boundaries.  This means that it will find a “wave function” for any energy but that they won't have A=0 in the rightmost region (or B=0 in the leftmost).  Ultimately, this means that WFE will often display incorrect wave functions.  It is up to you, as the user, to discern which are correct.  To do this you need to look for values of total energy that result in the wave function going asymptotically to zero as x→±∞.

Activity 5:  Change modes to Explorer mode.  If you had a good wave function in Sketcher mode, you should (almost) have a good wave function in Explorer mode - but this mode matches boundary conditions much more accurately than you can so you will probably have to adjust the total energy slightly to get a really good wave function.  Just change the total energy slowly upwards (or downwards) and make the wave function get closer to a nice exponential decay towards zero in the left and right regions.  Remember that the total energy control is logarithmic so that clicking near the center will change the value by just a tiny amount - you can use this feature to hone in on the exact right energy.  When you get a good wave function, sketch it and the probability density and write down the total energy.  Then press the run button and describe the time behavior of the wave function.

Finding the eigen-energies in Explorer mode is fairly easy.  You just have to adjust the total energy slowly up or down and look for those energies where the wave function goes to zero on both edges.

Activity 6:  I claimed that there were six eigen-energies for this potential.  You calculated them approximately in activity 4.  Use WFE in Explorer mode to find them all.  Sketch the wave functions (you might want to set t=0) and the probability densities and write down the total energy values.  (Note:  for the lowest energies you may not be able to find an energy value that exactly send the wave function to zero - but you should be able to get close.)

The "infinite" square well

In a previous in-gagement you studied what happened as V→∞ in an edge region in the half scattering case.  Now let's look at what happens as V→∞ in the bound state case.

Activity 7:  Set the total energy in WFE to the lowest eigen-energy that you found in Activity 6.  Now raise the potentials in the left and right regions to 10.0eV and slowly change the total energy until you are back on an eigen-energy (note: due to lack of numerical precision, you won't be able to quite get the function to go to 0 but you can get close and use your imagination.)  Sketch the wave function (for t=0) - at least sketch what it should look like.  How is it different from the case where V=3eV?  (Look especially right outside the boundaries of the center region.)  As V→∞ in these two regions what will happen to the wave function at the boundaries of the center region?

More complicated wells

The basic ideas that you learned while working with the simple potential diagram of the previous section all carry over to bound states in more complicated diagrams.  As you get more experience with more different potentials you will get better and better at predicting the shapes and energies of the wave functions in those diagrams.

Activity 8:  Set up WFE with the energy diagram shown in Figure 2.  Find all of the bound states.  Sketch the wave functions and probability densities at t=0 and write down the values of the total energy.  How are these similar to the bound states you saw in Activity 6?  How are they different?
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Figure 2:  Asymmetric square well.

Activity 9:  Set up WFE with the energy diagram shown in Figure 3.  Find all of the bound states.  Sketch the wave functions and probability densities at t=0 and write down the values of the total energy.  How are these similar to the bound states you saw in the previous activities?  How are they different?
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Figure 3:  Square well with step bottom.

Activity 10:  Set up WFE with the energy diagram shown in Figure 4.  Find all of the bound states (there are 10).  Sketch the wave functions and probability densities at t=0 and write down the values of the total energy.  How are these similar to the bound states you saw in the previous activities?  How are they different?
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Figure 4:  Stair-step well.

Activity 11:  Set up WFE with the energy diagram shown in Figure 5.  Find all of the bound states (there are 8).  Sketch the wave functions and probability densities at t=0 and write down the values of the total energy.  How are these similar to the bound states you saw in the previous activities?  How are they different?
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Figure 5: Double stair-step well.

The relationship between resonances and bound states

As you have already seen, resonances and bound states are closely related to each other.  Any time that you have a minimum in the potential energy function it is possible that there will be resonances or bound states.  Resonances can occur as long as E>V in one or both edge regions, bound states can occur only if E<V in both edge regions.  Both bound states and resonances occur only at specific values of total energy and in both cases the amplitude of the wave function "inside" the potential minimum is much larger than "outside" the minimum.  Furthermore, the shapes of bound state and resonance wave functions are very similar.

Activity 12:  Start WFE and put it into Explorer mode.  Set the number of regions to 4 and the region widths to 2.0nm, 2.0nm, 0.5nm, and 1.5nm (from left to right).  Set the region potentials to 1.5eV, 0.0eV, 1.5eV, and 1.5eV.  Set the total energy to 1.49eV and make sure that the animation is not running and the time is set to 0fs.  Also make sure the connect direction is Left to Right.  Now find all of the bound states by slowly lowering the total energy (there are 4).  For each one sketch the wave function and probability density and write down the value of total energy.  Now set the value of the potential energy in the rightmost region to 0.0eV so that there are no bound states.  Find all of the resonances by slowly raising the total energy - remember that at resonance the amplitude of the wave function in the right region will be very small.  For each resonance sketch the sketch the wave function and probability density and write down the value of total energy.  What conclusions can you make about the relationships between this type of resonance and bound states?
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