Tunneling – Getting Started

Goals and Introduction
In the previous in-gagements, you have studied quanta scattering in a wide variety of situations but with one major limitation, we have always required that E>V everywhere.  What happens in situations that have E<V in some regions?  For example, what behavior will we see for a quanta in a situation represented by the energy diagram in figure 1?  
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Figure 1: A simple energy diagram with E<V in the center region

Classically we expect that a particle coming into this region from the left or right will just "bounce" back the way it came without a change in speed.  This is exactly why we refer to the points at x=a and x=b where V=E as classical turning points, when the particle reaches these points it simply “turns around” and goes back the way it came.  A classical particle can never enter a region where E<V since the kinetic energy (E-V) would be negative in such a region (and 
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 just can’t be negative)! 

To find out how a quanta behaves in situations like this, we first need to solve the Schrödinger equation for regions where E<V then we can study the properties of those solutions and draw conclusions about quantum behavior.  As you will see, there are solutions to the Schrödinger equation with a constant potential and E<V.  These solutions might seem a bit unusual at first since classically a particle is never found in a region where E<V, but the theoretical results do match experiment and allow for a whole new set of novel quantum behavior (which is absolutely necessary to allow the existence of electron microscopes, alpha decay, and tunnel diodes - to name a few).

Once we have wave functions for regions with E<V, we will be able to construct wave functions for most any piecewise constant potential.  To do so we only have to write down a wave function in each region (using the wave functions that you have already learned about for regions where E>V and this new wave function for regions where E<V) and then match them at the boundaries between regions - resulting in wave functions that are valid everywhere.

Solutions for E<V

To find wave functions for regions where E<V we need to go back all the way to the Schrödinger equation.  As a brief review, recall that the one-dimensional Schrödinger equation can be written as:
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(Equation 1)

and that we are interested in the stationary state wave functions obtained using separation of variables:
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(Equation 2)

Also recall that we find the eigenfunctions, ψ(x), from the time-independent Schrödinger equation which is the result of combining equations 1 and 2:
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(Equation 3)

When the potential energy function is a constant (V(x) = V) then equation 3 can be written as: 
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(Equation 4)

These equations are identical to those you studied in “The Free Particle” in-gagement with an exception of a sign change in Equation 4.  This sign change is introduced merely to keep G>0 when E<V.  (It is not mathematically necessary but it is convienent.)

Equation 4 should look familiar to you from some courses you have taken in the past - it is one of the simplest second order ordinary differential equations.  With G>0 the general solution is:
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(Equation 5)

where C and D are arbitrary constants and k is related to V-E by:
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(Equation 6)
Note that this k is almost the same as the wave number k that you have been using so far in this chapter - the only difference is the order of E and V around the minus sign.  Some books distinguish the two by labeling this latter one with a Greek letter kappa, κ.  However, we find this notation a bit awkward and prefer to use the same symbol, k, for both.  This makes even more sense if you use absolute value bars in the equation - which then applies to both cases:
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(Equation 7)

Combining the eigenfunction of equation 5 with the separation of variables of equation 2 gives the wave function:
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(Equation 8) 

Exercise 1: Show by direct substitution that Equation 8 solves the Schrödinger equation (Equation 1) for a constant potential energy, V>E.

It is sometimes easier to think about this exponential type wave function in terms of a 'decay length', 
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, instead of k since L gives you an order of magnitude estimate of how rapidly the functions shrink (or grow).  When x increases by a distance L, the term 
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 grows by a factor of e (about 3) and the term 
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 decreases by a factor of 1/e (about 1/3).  (This is similar to the concept of “skin depth” in electromagnetism.)  If you are dealing with electrons in units of nanometers, nm, and electron volts, eV, then the equation for decay length is approximately:
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(Equation 9)

Exercise 2: Derive Equation 9 from Equation 6.  Calculate L for an electron with V-E = 1eV (about the energy differences typically found in atoms or at the surface of a metal).  How does this compare with typical distances in an atom?

Alternate forms of the solution

Equation 8 is the most commonly used form of the wave function, however, as with the E>V case there are other possibilities.  For situations with obvious symmetries it is sometimes convenient to use:
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(Equation 10)

since the functions sinh(x) and cosh(x) exhibit symmetries about x=0.

In WFE we use the form:


[image: image17.wmf]h

/

)

(

)

(

)

(

)

,

(

iEt

L

x

k

R

x

k

e

Be

Ae

t

x

-

-

-

-

+

=

Y






(Equation 11)

where R is the x value of the right edge of the region and L is the x value of the left edge.  This is identical to Equation 8 with:
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(Equation 12)

This form is used to keep the magnitudes of A and B reasonable.  To see how this works consider Equation 8 and Equation 11 with B and D equal to zero in a region with a right edge at x=10nm and k=3/nm (L=0.33nm).  Recall that with this decay length, the term 
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decreases by a factor of e-1 each time x increases by a distance of 0.33nm.  Across a region that is 10nm wide x would have increased by a distance of 30L and thus the term
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would have decreased by a factor of e-30.  So, if you wanted to have Ψ(R,0)=1 (for example to match a sine function with amplitude 1 in the next region to the right) then you would have to set C in Equation 8 equal to e-30 (about 9X10-14).  But you would just set A in Equation 11 equal to 1.  A value of A=1 is much easier to use in WFE than a value of C=9X10-14.

Exercise 3: Equation 11 allows us to make some very simple estimates.  If A and B are about the same magnitude and the region is sufficiently wide then 
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.  Show where these estimates come from.

Questions:

1) What do you expect graphs of the eigenfunction of equation 5 to look like?  Make some sketches for a few values of A and B.

2) Given the shape of the eigenfunctions that you graphed in question 1 and the time behavior of various wave functions in previous in-gagements, what do expect the time behavior of the wave function of equation 8 to be like?

3) For A=0, B=1, what does the probability density of the wave function of equation 8 look like?  Sketch it.  Where is the particle more likely to be?  Where is it less likely to be?  How does this change for A=1, B=0?  How does it change for A=1, B=1?

What do you expect the graphs of the eigenfunctions for the situation of Figure 1 to look like?  (Make a sketch).  Why? 
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